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Abstract 

The offshore wind technology in Taiwan's market is in its early stages and has many uncertainties, 

despite its high growth potential. The emerging market is facing the challenge of establishing a cost-

competitive offshore wind industry. This paper aims to evaluate offshore wind power investments in 

Taiwan using the probability-based Levelized Cost of Electricity (LCOE) model in order to investigate 

ways to overcome this challenge. To capture the project's uncertainties, a probabilistic approach and 

the Monte Carlo technique are utilized, and their effects on project evaluation are portrayed through the 

probability distribution of LCOE and sensitivity analysis. Additionally, a simulation based on a chron-

ological approach is developed to directly investigate the probability density function of the capacity 

factor for a specific wind farm site. The study concludes that the proposed approach provides better 

insights into projects and performs better in project evaluation, especially for projects located in high-

frequency wind areas. 

 

Research paper 

 

Keywords: Offshore Wind; Energy; Investment Evaluation; Uncertainty; Monte Carlo 

 

Reference to this paper should be made as follows: Nguyen, T. H. N., Chang, C., & Chen, H. (2023). 

Economic Evaluation of Offshore Wind Investments in Taiwan: An Uncertainty Approach. Journal of 

Entrepreneurship, Business and Economics, 11(2), 1–28.   

mailto:chiahua@stust.edu.tw
https://orcid.org/0000-0002-3243-3965
https://orcid.org/0000-0002-8584-993X
https://orcid.org/0000-0002-5201-0521


Nguyen, T. H. N., Chang, C., & Chen, H. 2023. Economic Evaluation of Offshore Wind In-vestments 

in Taiwan 

2 

 

Introduction 

In the last two decades, the world has observed a strong growth of wind en-

ergy in the energy sector. In 2020, the total installed capacity of wind energy 

reaches 733.3 GW (IRENA, 2020) accounting for about 5% of world elec-

tricity and 2% of the world's total energy (BP, 2020). In the wind energy sec-

tor, although offshore wind energy has made up a relatively small proportion, 

the installed capacity of this section has incredibly increased 10 times from 

3.3 GW in 2011 to 32.5 GW in 2020 (GWEC, 2020).  

From 2021 to 2026, the offshore market is projected to expand at a 

compound annual growth rate (CAGR) exceeding 10%, with the Asia Pacific 

market demonstrating the highest CAGR (GWEC, 2020; Dana et al., 2022). 

According to estimates (GWEC, 2020), Taiwan will likely become one of the 

top five offshore wind markets in the Asia Pacific region over the next decade. 

Since cost reduction can only be achieved by reaching a certain level of mar-

ket volume, the emerging market is facing the challenge of establishing a 

cost-competitive offshore wind industry. To investigate the ways to overcome 

this challenge, a proper assessment indicator is necessary.  

The Levelized Cost of Electricity (LCOE) has emerged as the most 

frequently utilized metric in the energy sector to evaluate and contrast the 

cost-effectiveness of various energy sources. The LCOE metric is a variant 

of the discounted cash flow (DCF) approach, which is utilized to determine 

the break-even price of electricity that would balance the present value of a 

project's revenue with the total discounted cost over its entire life cycle. The-

oretically, LCOE is a single value. However, it is suggested to display LCOE 

as a range of values to reflect the uncertainty of input variables such as energy 
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production, capital costs, operation cost, and financial expenses. Indeed, sev-

eral studies have employed Monte Carlo Simulation to produce the range of 

LCOE values formed as a probability distribution. The studies provide evi-

dence that the probability-based LCOE offers a much better understanding of 

renewable energy investments by capturing the relevant risks.  

This study employed the probabilistic approach and the Monte Carlo 

technique to capture the project’s uncertainties and then portray their effects 

on project evaluation. The probability distribution of LCOE and sensitivity 

analysis are generated to assess these effects, with a focus on three variables: 

operation and maintenance (O&M) costs, capacity factor (CF), and return on 

equity (ROE). The study also developed a simulation based on a chronologi-

cal approach to investigate the probability density function of CF for a spe-

cific wind farm site. Results suggest that this approach provides improved 

insights and better project evaluation, particularly for high-frequency wind 

areas. 

The study is predicted to enhance its probabilistic approach by adding 

location-based impact into the distribution estimation of the CF. The LCOE 

output distribution provides better insights into projects and performs better 

in project evaluation, enabling more informed decisions by project developers 

and policymakers. Especially, the proposed approach of directly calculating 

capacity factor allows us to obtain a more accurate LCOE distribution of new 

projects in immature markets like Taiwan where the energy generation data 

of offshore wind projects are unreadily available.  

The next section provides a review of relevant literature and the re-

search gap, while section three introduces the LCOE model and CF simula-
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tion model used in the research. In section four, a case study project is pre-

sented, including a discussion on the uncertain nature of input variables 

within the LCOE model. Section five reveals the calculated CF distribution, 

LCOE output results, and sensitivity analysis. Finally, section six provides 

the conclusions.  

 

Literature review 

To date, several studies have proved the importance of accounting for 

uncertainty in principal input variables to acquire ranges of LCOE values. 

Feretic and Tomsic (2005), Roques, Nuttall, and Newbery (2006) proposed 

the probabilistic approach to solving the uncertainty issue in LCOE modeling 

by considering all possible or available likelihoods of the input variables. Dar-

ling, You, Veselka, and Velosa (2011) imported the distribution of input var-

iables into the Monte Carlo simulation to compute the LCOE for photovolta-

ics. For nuclear and gas power projects, Geissmann and Ponta (2017) used 

the same approach to calculate the LCOE considering the risks in power plant 

projects. Meanwhile, Lucheroni and Mari (2017) develop a similar approach 

but include the fluctuation in carbon price and installation duration. 

In the wind energy section, Ioannou, Angus, and Brennan (2017) com-

bine Monte Carlo simulation with the stochastic approach to deal with the 

unstable financial and technical parameters that influence capital and operat-

ing cost ranges. Recently, Tran and Smith (2018) adopted the probabilistic 

approach to evaluate several generation technologies such as nuclear, coal, 

natural gas, biomass, solar PV, and wind. The mentioned studies provide ev-

idence that the probability-based LCOE offers a much better understanding 

of renewable energy investments by capturing the relevant risks. However, 
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since the used model is aimed to represent industry-level range values of 

LCOE for each technology, it is inappropriate for analyzing a specific project, 

specifically from geographically dependent resources.  

Since renewable resources are location-specific, the capacity factor of 

a power plant should be tailored to the site. Heck, Smith, and Hittinger (2016) 

noted that variations in location can impact LCOE values for renewable en-

ergy projects by up to 50%, and affect their uncertainty through capacity fac-

tor variability (Yakubu et al., 2022; Arasti & Salamzadeh, 2018; Salamzadeh 

& Markovic, 2018; Romanovich et al., 2022). However, in emerging markets, 

limited data on energy performance makes capacity factor assumptions less 

reliable. Hence, the capacity factor needs to be directly calculated instead of 

simply assumed. Despite this, the issue is seldom addressed in current wind 

energy studies (Shen et al., 2020).  

This study aims to to fill that research gap by expanding the probabil-

istic approach to compute the probability density function (PDF) of a capacity 

factor in LCOE modeling for wind energy projects. In the research, the prob-

abilistic approach in LCOE calculation is designed at the plant level by fac-

toring in the location-specific impact to estimate the capacity factor distribu-

tion. In the process, we focus on the probability density function (PDF) of 

three variables: Capacity Factor (CF), Return on Equity (ROE), and Opera-

tion and Maintenance Expense (OpEx). To compute the PDF of monthly ca-

pacity factors, we directly use hourly wind speed time-series data. 

 

Methodology 

This section will describe the employed techniques and models. In 

short, the probability distributions of those parameters are imported into the 
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LCOE model by using Monte Carlo simulation, generating the output LCOE 

distribution (see Figure 1). At the same time, sensitivity analysis is carried 

out to investigate the relationship between project valuation and input factors. 

The output distribution and sensitivity analysis are expected to capture the 

project uncertainty, providing insights into the project.  

 

 

Figure 1. Flow chart of the proposed assessment model 

 

LCOE Model Simulation 

In this thesis, the LCOE calculation follows a manual of the economic 

assessment for energy conducted by Short, Packey, and Holt (1995), since the 
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approach is compatible with Monte Carlo simulation and sensitivity analysis. 

The method relies on an evaluation of future cash flows using the discounted 

cash flow (DCF) approach. In this manner, the levelized cost of electricity 

(LCOE) can be defined as the price at which a project generates enough rev-

enue to cover all discounted costs over its lifetime, resulting in a net present 

value (NPV) of zero. As the present value of project revenues equals the sum 

of the electricity price in year n multiplied by the annual energy production 

in year n (𝐸𝑛) discounted with discount rate d, we get the equation: 

∑
𝐸𝑛 × 𝐿𝐶𝑂𝐸𝑛

(1 + 𝑑)𝑛

𝑁

𝑛=1

= 𝑇𝐿𝐶𝐶  (2.1) 

where TLCC is the total discounted life-cycle cost of a wind power 

project. Assuming that the LCOE has a constant annual value, we can rear-

range equation (2.1) as: 

𝐿𝐶𝑂𝐸 =
𝑇𝐿𝐶𝐶

∑
𝐸𝑛

(1 + 𝑑)𝑛
𝑁
𝑛=1

  
(2.2) 

The TLCC is composed of many different costs associated with own-

ing an asset during its lifetime or the specific duration of interest to the inves-

tor (Short et al., 1995). TLCC can be calculated in different ways, depending 

on how taxes are treated (Batrancea et al., 2019, 2022). In the thesis context, 

we will take the effect of tax into account (Nguyen, Chang, & Tsai, 2022): 

𝑇𝐿𝐶𝐶 = 𝐶𝑎𝑝𝐸𝑥 − ∑
𝐷𝑒𝑝𝑛

(1 + 𝑑)𝑛

𝑁

𝑛=1

× 𝑇𝑛 + ∑
𝑂𝑝𝐸𝑥𝑛

(1 + 𝑑)𝑛

𝑁

𝑛=1

(1 − 𝑇𝑛) (2.3) 

where CapEx is the capital cost, while Depn, OpExn, and Tn are depre-

ciation, operation and maintenance costs, and tax rate in year n, respectively. 
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The below equation is commonly used to compute the annual energy 

generated by a wind power system that has a capacity factor CF (Moné et al., 

2017): 

𝐸 = 𝑡 × 𝑄 × 𝐶𝐹 (2.4) 

where t is the time length, typically measured in hours. Thus, t equals 

8760 (hours) in the annual energy production calculation. Q denotes the in-

stalled capacity, which is determined by the number of turbines equipped as 

well as the turbine model. 

By replacing two terms in equation (2) with equations (3 and (4) we 

obtain the equation as follows: 

𝐿𝐶𝑂𝐸

=  
𝐶𝑎𝑝𝐸𝑥 − ∑

𝐷𝑒𝑝𝑛

(1 + 𝑑)𝑛
𝑁
𝑛=1 × 𝑇 + ∑

𝑂𝑝𝐸𝑥𝑛

(1 + 𝑑)𝑛
𝑁
𝑛=1 (1 − 𝑇)

(1 − 𝑇) ∑
8760 × 𝑄 × 𝐶𝐹𝑛

(1 + 𝑑)𝑛
𝑁
𝑛=1

   
(2.5) 

In brief, four major input variables in the LCOE model of a power 

system are the capital expenses (CapEx), the annual operating and mainte-

nance expenses (𝑂𝑝𝐸𝑥𝑛); the discount rate (d) presenting the financial ex-

penses (FinEx) and the annual energy production (𝐸𝑛) which mainly depends 

on the capacity factor (CF).  

To apply Monte Carlo simulation to the LCOE calculation model, the 

uncertainty associated with each input variable will be well investigated. 

Based on the comprehensive understanding of their range of values, the 

probability distribution of these input variables will be defined (see Figure 1). 

During the simulation, a set of sample values for all input variables is chosen 

at random by randomly selecting a value from each variable's distribution. 

The output value is obtained by importing iteration into the calculating model. 
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The resulting range of all possibilities generates a distribution that can capture 

the uncertainty of input variables. Each set of samples is referred to as an 

iteration. In the research, the simulation will have 100000 iterations.  

 

Capacity Factor 

The capacity factor (CF) is widely utilized as another measurement of 

energy production to evaluate the performance of wind systems (Nguyen et 

al., 2022). The CF of a wind turbine is defined as the ratio of power output 

produced by the turbine (E) to its full possible output (ER) if it had been op-

erating at rated capacity (PR) over a duration period (H) (Ayodele, Jimoh, 

Munda, & Agee, 2012; Chang & Tu, 2007): 

𝐶𝐹 =
𝐸

𝐸𝑅
=

𝐸

𝐻𝑃𝑅
 (3.7) 

The power output produced by the turbine (E) is driven by wind tur-

bine performance and wind speed. To deal with the unpredictable nature of 

wind speeds, many methods have been developed. Some studies adopt the 

parameter as well as non-parameter distributions to characterize wind speed 

distribution (Celik, 2004; Gass, Schmidt, Strauss, & Schmid, 2013; Ramírez 

& Carta, 2005), while some others employ the chronological approach treat-

ing wind speeds as time-series data (Chang, Wu, Hsu, Chu, & Liao, 2003; 

Nguyen et al., 2022).  Chang and Tu (2007) suggested that the time-series 

approach can avoid errors in the parameter estimation process, giving a better 

prediction of energy production than other approaches. Thus, we also adopt 

the chronological approach in this thesis. Accordingly, the the energy output 

is computed by the below equation: 
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𝐸 = ∑ 𝑃𝑖(𝑉)∆𝑡𝑖

𝐻∆

𝑖=1

 (3.6) 

where Pi(V) is the energy generated at wind speed V of wind speed. 

∆ti is the time interval and H∆ is the number of ∆ti in examined duration. For 

the annual energy production, if the wind speed data used is hourly time-se-

ries, then ∆ti = 1 hour while H∆ is 8670 (hours). 

The value of Pi(V) depends on the wind turbine effectivity presented 

as the power curve. Various models have been proposed for representing the 

wind turbine power curve (WTPC). However, many studies (Carrillo, Mon-

taño, Cidrás, Díaz-Dorado, & Reviews, 2013; Teyabeen, Akkari, & Jwaid, 

2017) indicate that the cubic model yields the lowest average relative error in 

capacity factor estimation. In the model, P(V) is calculated by air density ρ, 

is the swept area of the turbine A (A=πr2), wind speed V and Cp, eq constant 

equivalent to the power coefficient (Carrillo, Montaño, Cidrás, & Díaz-Do-

rado, 2013): 

  0,    𝑉 ≤ 𝑉𝐼 or 𝑉 ≥  𝑉𝑂 

1

2
𝜌𝐴𝐶𝑝,𝑒𝑞𝑉3,     𝑉𝐼 ≤ 𝑉 ≤ 𝑉𝑅 

𝑃𝑅 ,   𝑉𝑅 ≤ 𝑉 ≤ 𝑉𝑂  

(3.7) 

where VI, VR, and VO indicate the cut-in wind speed, the rated wind 

speed, and the cut-out wind speed, respectively. PR is the rated power output.  

 The CF in a time interval is a mean of the CF in smaller time 

intervals from time series (Nguyen et al., 2022): 

 P(𝑉)= 
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𝑑𝑎𝑖𝑙𝑦 𝐶𝐹 =
∑ 𝑃𝑖(𝑉) × 124

𝑖=1  

24 × 𝑃𝑅
=

1

24
×

∑ 𝑃𝑖(𝑉)24
𝑖=1

𝑃𝑅

=
1

24
× ∑

𝑃𝑖(𝑉) × 1

1 × 𝑃𝑅

24

𝑖=1

=
1

24
× ∑ ℎ𝑜𝑢𝑟𝑙𝑦 𝐶𝐹𝑖 

24

𝑖=1

  

(3.8) 

 

Capacity Factor Simulation 

Since wind speeds are unpredictable, it is challenging to accurately 

determine the capacity factor of wind energy systems. In the study, we deter-

mine the CF’s probability distribution from CF values generated based on 

historical wind speed data. Throughout the process, all values, including non-

positive ones, are captured. As it is suggested to examine wind power at 

monthly intervals (Chang & Tu, 2007), the model will first estimate the 

monthly CF distributions, then generate the annual CF distribution by using 

MCS.  

To obtain monthly CF (mCF) data, a method was employed where 

10,000 random samples were chosen from historical time-series data of daily 

CF (dCF), each consisting of 30 observations. As daily CF values may exhibit 

autocorrelation due to the time-dependent nature of wind speed, moving 

block sampling was employed using a block size of three days. To ensure 

consistency, it was assumed that each month comprised 30 days, and there-

fore each sample consisted of 10 blocks or 30 daily CF values. The sampling 

process was carried out independently for each month of the year, from Jan-

uary to December. 

Since the capacity factor will be directly calculated from wind speed 

data, the approach provides a more accurate estimation of the capacity factor 

of planned or under-construction wind projects. Moreover, the approach is 
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appropriate for wind projects in immature markets where energy generation 

data are unreadily available.  

 

Input data and case study 

In this section, the proposal calculation model will be employed to 

generate the LCOE analysis for a case-studied offshore wind project. Since 

the data of installed cost, O&M cost and equity ratio are only available for 

the existing wind projects, we selected Formosa I project in Taiwan, which is 

the first offshore wind project at a commercial scale in the Asian-Pacific re-

gion as a case study. Table 1 presents input variables values from the profile 

of the project. 

Table 1. Information of case studied wind farm 

Input Parameters Value Input Parameters Value 

Location 24.711N; 

120.814E 

Capital Expense 

(CapEx)  

626 Mil. USD 

Turbine type SWT-6.0-154 Annual Operation and Maintenance Expense 

(OpEx)  

Total Installed 

Capacity (Q) 

120 MW - Range 125-188 

USD/kW-yr 

Equity ratio 0.3* - Distribution - Log-

normal 

µ = 5.05 σ = 0.1 

Interest Rate *** 1.63% Return of Equity (ROE) 
 

Tax rate (T) ** 15.0% -  Range 12-16 % 

Depreciation Period* 10 years - Distribution – Normal µ = 14 σ = 1 

Project Lifetime (N) 20 years Feed-in Tariff  17 USD 

cents/kWh 
Note: * We assume all projects imply the straight depreciation principle with a period of 10 years. Since the equity 

ratio is not available, we use the standard ratio of 0.3 (Kost et al., 2013).  

Source: innoVent.GmbH (2020), Shumkov (2018), thewindpower.net (2023), Taiwan (2018) 

To estimate the distribution of LCOE for offshore wind farms, we will 

use Monte Carlo simulation (MCS). For each input variable in the LCOE 

equation (Eq. 3), a value will be randomly selected from its probability dis-

tribution to generate a set of input values, known as an iteration. The resulting 
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LCOE value will be recorded for each iteration. We will simulate 100,000 

iterations in this study. We now consider the four main input variables in the 

LCOE calculation model.  

 

Capacity Factor 

Hourly time-series wind speed data for the wind farms between 2010 

and 2019 are obtained from renewables.ninja database. Wind speeds in Tai-

wan are highly variable and occasionally reach extreme levels, with speeds 

over 25 m/s, while the average wind speed is 6.8 m/s and 6.7 m/s ( 

Table 2). 

 

Table 2. Descriptive Statistics for hourly wind speed 

Minimum 

(m/s) 

Maximum 

(m/s) 

Mean 

(m/s) 

Standard  

Deviation 
Count 

P-value  

Jarque-Bera test 

0.2 38.2 6.8 3.6 87648 0.000 

 

Table 3. Characteristics of the Offshore Wind Turbine 

Characteristics Value 

Turbine Model SWT-6.0-154 

Cut-in wind speed VI (m/s): 3 

Rated wind speed VR (m/s): 13 

Cut-out wind speed VO (m/s): 25 

Rated power PR (kW) 6000 

a1 -0.0026 

a2 0.0593 

a3 -0.2886 

a4 0.4573 

Note: The cut-in, rated, and cut-off speeds are obtained directly from the power curve data of the turbine presented 

in Table A1. The values of a1, a2, a3, and a4 are obtained by running a regression between values of wind speed (V) 

and corresponding values of power output (Pi(V)) to fit the turbine power curve. 

The results of the PDFs for monthly CFs are presented in this section. 
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Operation and Maintenance Expense 

Typically, operation and maintenance expenses (OpEx) are catego-

rized into fixed and variable costs (I. IRENA, 2012; Moné et al., 2017; Pereira 

et al., 2021). Fixed OpEx usually refers to known expenses related to opera-

tions, such as insurance, administration, and service contracts. Meanwhile, 

variable OpEx encompasses unforeseen maintenance and other expenses that 

are not covered by fixed contracts. However, since both aspects of OpEx are 

often mentioned as the total annual O&M costs in energy reports (I. IRENA, 

2012; I. IRENA, 2019), in this study, we will present them as a single term – 

annual OpEx, measured in USD/kW/year. 

The primary cause of uncertainty in OpEx arises from an unscheduled 

maintenance, which is determined by the wind turbine and component failure 

rate. The failure rate can be estimated using lognormal distribution or a two-

parameter Weibull (Poore & Walford, 2008). For simplicity, we assume that 

the failure rate follows a lognormal distribution, leading to O&M costs being 

lognormally distributed as well. Table 1 illustrates the assumed distribution 

and range of OpEx, based on the Taiwan Ministry of Economic Affairs' 

demonstration model wind farm (BOE, 2014; Wen, Lin, Feng, Ko, & Lin, 

2015; Salamzadeh et al., 2021, 2022). Thus, the annual OpEx for the studied 

project is estimated to be 3% of the capital expenditure. 

 

Discount Rate 

The discount rate (d) serves to discount costs and energy production 

while representing the project's financing expenses. To account for financing 

costs, the Weighted Average Cost of Capital (WACC) is commonly used 

(Ondraczek, Komendantova, & Patt, 2015). The study adopts the after-tax 



Journal of Entrepreneurship, Business, and Economics, 2023, 11(2), 1–28 

15 

 

WACC as the discount rate to also factor in the tax shield effect of debt, which 

can be calculated as follows (Nguyen et al., 2022): 

𝑊𝐴𝐶𝐶 =
𝐸

𝐷 + 𝐸
𝑟𝑒 +

𝐷

𝐷 + 𝐸
𝑟𝑑(1 − 𝑇) (9) 

where T represents the average corporate tax rate; D and E are the 

debt and equity amounts utilized for project financing; re and rd are the rate of 

return on equity and the interest rate, respectively. While the rd and debt-to-

equity ratio remains constant for a given wind project (Kost et al., 2013), the 

re can vary over the project's lifetime.  

The return on equity is the expected return on investment for investors 

and is determined by the project's risk and the investor's risk aversion level 

(Nguyen et al., 2022). Hence, the re value may experience occasional fluctu-

ations due to market volatility, policy uncertainty, and the impact of signifi-

cant events (Shen et al., 2020). For the wind farms studied, we use a normal 

distribution that covers the range value for re to account for various financing 

scenarios (Table 1). Generally, the cost of equity for onshore wind projects 

ranges from 11% to 15% (Moné et al., 2015), and for offshore projects, we 

add a 1% premium due to their relatively high risk.  

 

Capital Expense 

The capital expense (CapEx) represents the total costs incurred by a 

wind farm project in the construction and installation. The CapEx is typically 

made up of three primary components: wind turbines (70-80% of total invest-

ment), system balance, and construction financing (Stehly & Beiter, 2020). 

Although CapEx values vary widely based on site and market (IRENA, 
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2019), for a specific project, CapEx depends on predicted factors such as in-

stalled turbine models, project size, and location, leading to minimal variation 

during construction. In our study, we use a single CapEx value based on the 

project profile (Table 1), but the net CapEx remains uncertain due to varia-

tions in the total discounted depreciation values caused by changes in the dis-

count rate. 

 

Results 

In this section, we present the results obtained for the capacity factor 

and LCOE distribution, along with a sensitivity analysis. We also elaborate 

on the benefits derived from using the proposed calculation model. 

 

Capacity Factor  

Table 4 displays the average monthly capacity factor (CF) for a stud-

ied wind farm, along with their respective standard deviations. Notably, the 

CFs of the Taiwan wind farm exhibit a higher degree of variability due to the 

volatile and occasionally forceful nature of the wind. Specifically, the months 

between October and February experience strong winds, resulting in monthly 

CFs that consistently exceed 50%. The annual CF distributions that are di-

rectly based on yearly averages might neglect the seasonal effect which cre-

ates significant variations of monthly average wind speed throughout a year. 

Therefore, we decided to calculate annual CF based on monthly CF distribu-

tion. In particular, we select a random CF value for each month from its dis-

tribution and then calculate the annual CF as the 12-month average. 
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Table 4. Monthly CF distribution parameters (%) 

Month 

Formosa I 

Mean 
Standard 

Deviation 
P-value 

Jan 58 5.7 0.260 

Feb 50 6.3 0.953 

Mar 37 5.4 0.059 

Apr 29 4.6 0.526 

May 28 4.7 0.810 

Jun 36 5.5 0.876 

Jul 34 5.7 0.712 

Aug 27 5.1 0.006 

Sep 37 6.4 0.909 

Oct 64 6.0 0.057 

Nov 56 6.4 0.523 

Dec 68 5.7 0.856 

Average Annual CF 44 
  

Note: To determine whether the monthly CF follows a normal distribution, the Anderson-Darling test is 

employed. Most of the tests gave a p-value > 0.005, there are some exceptions for some months in which the CF is 

low. As a result, the normal distribution of monthly CF values cannot be rejected and is considered a satisfactory 

approximation.  

 

Table 5. Selected distribution of annual CF based on the traditional approach 

Range Distribution Parameters Sources 

31.5-45 Normal µ = 40; σ = 4 Tran and Smith (2018) 
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Figure 2. Comparing CF distribution using proposed and literature-based 

methods 

To present the performance of the calculating method, we divided data 

from 10 year period into two groups: a training group of 6 years period from 

2010 to 2016 and a testing group of 3 years period from 2017 to 2019. The 

training data was used to generate monthly and annual CF distributions, 

which were then compared to the historical annual CF values of 2017-2019. 

In addition, the CF values generated by the proposed method were compared 

to those assumed in previous studies.  

Table 5 displays the assumptive distribution of annual CF based on 

Tran and Smith's approach (Tran & Smith, 2018), with the range of CF values 

adjusted based on a wind energy assessment report for Taiwan's offshore 

wind markets.  

The proposed CF calculation method provides a more accurate esti-

mation of CF values for a wind project, taking into account the unpredictable 
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fluctuations in wind speed. As demonstrated in Figure 2, The estimated CF 

distribution generated by the proposed method manages to encompass all ac-

tual CF values between 2016 and 2019, while the generated distribution is 

much narrower than the CF distribution suggested by the traditional approach.  

 

LCOE distribution  

Without Monte Carlo simulation (MCS), Formosa I's LCOE is 16.5 

US$ cents per kWh. After fitting input variables to their range values and 

performing 100,000 iterations of MCS, we obtained the probability distribu-

tions of LCOE values for the case study project. Our analysis indicates that 

the normal distribution is the most appropriate for LCOE output.  

By capturing the inherent unpredictability of wind energy projects, the 

LCOE range offers a deeper grasp of the anticipated costs for wind energy 

projects. Unlike single-point or scenario estimates, the probability-based 

method incorporates both the projected value and standard deviation to ac-

count for volatility in electricity prices. For instance, based on statistics from 

LCOE output (Table 6), one can state that the electricity cost of Formosa I is 

less than 18.4 US cents/kWh with a 95% confidence interval.  

 

Table 6. Summary statistics of LCOE output (in US Cent/kWh) 

Min Median Mean Max Std Dev Mean ± 2 Std Dev 

13.2 16.4 16.5 22.0 0.96 (14.6-18.4) 

 

To compare the performance of our proposed CF simulation model to 

existing probabilistic models that assume a simple CF distribution, we con-

ducted another MCS run while keeping all input variables constant except for 

the assumed CF. Two compared models show a difference of 0.63 USD 
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cents/kWh in expected electricity cost values (Figure 3a), resulting in an in-

crease of 28.3 USD mil. in expected NPV from -6.7 USD mil. to 21.6 USD 

mil. Figure 3b illustrates the correlation between LCOE output results and CF 

input values. By generating a more specific and accurate CF distribution, the 

proposed model provides a relatively thinner yet more precise LCOE distri-

bution, leading to more well-informed decisions for both policymakers and 

project developers. 

 

Figure 3. (a) Comparison of LCOE distribution generated by proposed and 

existing models; (b) The tiled histogram view of LCOE results with corre-

sponding CF values 

 

Sensitivity Analysis 

Additional information can be obtained from an examination of the 

sensitivity of the LCOE to the various input variables. Sensitivity analyses 

were carried out by shifting a specific input variable by a range value of ±X%  

while holding all other input variables constant. To understand how real-

world ranges influence LCOE, e is shifted in the range of 0.1 to 0.3, and the 
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project´s lifetime, N is changed to a range of 20 to 25 years for both cases, 

and the tax rate T is shifted in the range of 10% to 20%. The figures below 

show us how each variable affects LCOE value. 

  

Figure 4. (a) Sensitivity of LCOE value to input variables (b) Margin ef-

fects of each input variable on LCOE (US cent/kWh) 

Figure 4a shows that the project's LCOE has a negative correlation 

with CF and N, but a positive correlation with other input variables. Increas-

ing CF and N or decreasing CapEx, OpEx, or taxes can reduce LCOE, but 

these variables are usually not independent. For example, increasing CF with 

a more advanced turbine may raise ICC and LCOE, while extending the pro-

ject lifetime may increase O&M and the expected return. Reducing the equity 

ratio of the project is also a good solution for project managers but a higher 

interest rate on loans is expected. By that, we introduce the concept of the 

margin effects of each input variable on LCOE (Figure 4b). These margin 

effects can be used by the project developer can use to estimate the combined 

effect if more than one input variable changes its value. Nevertheless, every 

wind project possesses distinct features, and thus, the sensitivities depicted 

here are not universally applicable. 

(b) 
(a) 



Nguyen, T. H. N., Chang, C., & Chen, H. 2023. Economic Evaluation of Offshore Wind In-vestments 

in Taiwan 

22 

 

Conclusions 

The utilization of Monte Carlo simulation in LCOE calculation is a 

well-established probabilistic technique that takes into account uncertainties 

within a wind project and creates a distribution of LCOE output. However, 

the existing studies typically rely on a simplistic assumption for energy pro-

duction by utilizing the capacity factor value stated in the wind production 

assessment report of the industry.  

The study concentrates on constructing an LCOE-calculation model 

and creates an LCOE output distribution for wind energy which captures the 

uncertainty elements associated with the input variables by conducting the 

Monte Carlo simulation. In particular, special attention has been paid to the 

PDF of three variables: operation and maintenance (O&M) costs, capacity 

factor (CF), and return on equity (ROE). In the paper, the key calculation is 

the time-series analysis of hourly wind speed data given wind turbine charac-

teristics to directly investigate the probability function of the capacity factor. 

The study has completed the probabilistic approach in calculating LCOE at 

the plant level by adding the location-based impact on estimating the distri-

bution of the capacity factor, allowing us to obtain a more accurate LCOE 

distribution of new projects in immature markets like Taiwan where the en-

ergy generation data of onshore and/or offshore wind projects are unreadily 

available. 

Using real data from an offshore wind farm in Taiwan as a case study, 

we can draw the following conclusions: 

(1) The normal distribution of monthly CF values cannot be rejected 

and is considered a satisfactory approximation. Although wind 

speed is unpredictable, the range of annual CF at a specific site is 
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smaller than expected and commonly assumed. Since the capacity 

factor will be directly calculated from wind speed data, the ap-

proach provides a more accurate estimation of the capacity factor 

distribution. The proposed approach is appropriate for planned or 

under-construction wind projects in immature markets where en-

ergy generation data are unreadily available.  

(2) A probability distribution of LCOE values provides a better un-

derstanding of the cost of electricity generated by a wind energy 

project compared to a single value or scenario, as it considers the 

inherent uncertainty. The proposed model generates a narrow-

downed but more precise LCOE distribution than existing proba-

bilistic-oriented LCOE models by accounting for location-based 

impact on the uncertainty of a capacity factor. Using the proposed 

approach enables developers and policymakers to make practical 

decisions regarding price-based mechanisms like feed-in tariffs, 

green certificates, auctions, and feed-in premiums. 

(3) The method also allows them to conduct a sensitivity analysis 

which presents the correlation between LCOE and input variables 

as well as their margin effects on LCOE. The margin effects of 

each input variable on LCOE might be a tool that helps the project 

developer to estimate the combined effect if more than one input 

variable changes its value. 

The proposed approach can be used for real options analysis of project 

value by indicating the expected value and volatility of electricity cost for a 

specific offshore project. Additionally, this approach can serve as a strong 
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foundation for future applications in project portfolio management. To in-

crease the accuracy of the LCOE model, a future expansion of the model 

could pay interest to location-based factors that can affect the uncertainty of 

input variables, such as the effect of localization on the uncertainty of opera-

tion and maintenance expense. 
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Appendix   

Table A1. Data for power curves of the studied wind turbines 

Wind speed V (m/s) Power Pi (kW) Wind speed V (m/s) Power Pi (kW) 

1 0 11 5850 

2 0 11.5 5905 

2.5 0 12 5960 

3 170 12.5 5980 

3.5 380 13 6000 

4 590 13.5 6000 

4.5 845 14 6000 

5 1100 15 6000 

5.5 1450 16 6000 

6 1800 17 6000 

6.5 2175 18 6000 

7 2550 19 6000 

7.5 3000 20 6000 

8 3450 21 6000 

8.5 3975 22 6000 

9 4500 23 6000 

9.5 5025 24 6000 

10 5550 25 6000 

10.5 5700 26 0 

Source: https://www.thewindpower.net/turbines_manufacturers_en.php 
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